Diurnal Differences in OLR Climatologies and Anomaly Time Series

- Introduction
- AIRS and CERES OLR comparison
 - 1. Climatologies

(OLR, clear sky OLR, LW cloud radiative forcing)

2. Anomalies

AIRS Version-6 Level-3 Products Used

- OLR and OLRclr are computed by the OLR Radiative Transfer Algorithm (*Iacono et al.*, 2008) for 16 spectral bands with the AIRS retrieved geophysical parameters (*i.e.*, Ts, T(p), $O_3(p)$, $CO_2(p)$, $H_2O(p)$, cloud height, and cloud fraction) for a given scene.
- Derived independently from CERES, OLR and spectral OLR are available.
- Diurnal difference is achieved by the difference from ascending (1:30PM) and descending (1:30AM) orbit.
- Cloud spectral emissivity is assumed to be gray in the OLR calculation, this is not true for cirrus clouds.

CERES EBAF Edition 2.8 Products Used

- OLR is primarily a measured quantity using broad banded observation taken at a single zenith angle.
- TOA OLR is balanced and filled to adjust SW and LW TOA fluxes to reduce the imbalance in the net flux.
- Separation 2.8 uses only Terra CERES

Part 1

Comparison of AIRS and CERES OLR Time Series and Climatologies

- CERES and AIRS climatologies are based on the same 12 consecutive years as AIRS (September 2002 through October 2014)
- For AIRS, 1:30 PM and 1:30 AM level-3 monthly mean, 1°x1° gridded OLR and clear sky OLR (OLRclr) products are analyzed separately from each other.
- Daily averaged values are calculated as a mean of two local time observations.

Area Mean OLR Time Series (W/m²)

September 2002 through October 2014 Global

AIRS 1:30 PM AIRS 1:30 AM AIRS AM/PM Average

CERES

- CERES global mean OLR closely matches AIRS 1:30AM values.
- OLR is time of day dependent.
- Global mean OLR is 7W/m² higher at 1:30PM than 1:30 AM.

Differences in Area Mean OLR Time Series (W/m²)

September 2002 through October 2014 Global

AIRS 1:30 PM AIRS 1:30 AM AIRS AM/PM Average

- AIRS/CERES OLR global and tropical mean differences are roughly constant over the 12 yrs.
- CERES global mean OLR closely matches AIRS 1:30AM values, it is also true in the tropics, and extra tropics during summer.
- In NH, difference with 1:30AM and 1:30PM is out phase.

In SH, AIRS OLR is higher in every case.

Joel Susskind, Jae Lee, Lena Iredell, Norm Loeb

Differences Between AIRS and CERES OLR Time Series (W/m²)			
	AIRS 1:30AM minus CERES	AIRS 1:30PM minus CERES	AIRS 1:30PM/AM minus CERES
Global Mean			
Bias	0.29	6.77	(3.53)
STD	0.24	0.33	0.22
Slope (W/m²/yr)	0.0133±0.0111	0.0042± 0.0160	0.0086±0.0103
Tropical Mean			
Bias	0.44	8.23	4.35
STD	0.35	0.34	0.24
Slope (W/m²/yr)	0.0256±0.0157	0.0012±0.0166	0.0132±0.0106
30N-90N Mean			
Bias	-1.13	6.63	(2.75)
STD	0.98	1.00	0.46
Slope (W/m²/yr)	-0.0182±0.0475	0.0146±0.0487	-0.0020±0.0222
30S-90S Mean			
Bias	1.37	4.08	(2.73)
STD	0.85	0.48	0.30
Slope (W/m²/yr)	0.0204±0.0411	-0.0003±0.0277	0.0100±0.0140

Outgoing Longwave Radiation (W/m²) January Climatology C)AIRS 1:30 AM/PM minus CERES AIRS 1:30 AM/PM Average Mean = 240.07 STD = 31.95 90 130 170 210 250 290 330 370 Mean = 236.77 STD = 31.62 STD = 2.25 Mean = 3.31AIRS 1:30 AM minus CERES e) AIRS 1:30 PM minus CERES f) AIRS 1:30 Mean = 6.37 Mean = 6.18 STD = 10.34 STD = 7.12 Mean = 0.19STD = 3.79

- While AIRS 1:30AM global mean OLR matches CERES, ocean area are higher and land areas are lower in AIRS.
- AIRS daily averaged OLR is higher compared to CERES every where, but the biases reflect AIRS day/night difference pattern.

Outgoing Longwave Radiation (W/m²) July Climatology

- Results in July are similar to those in January.
- Diurnal differences in AIRS show deep convective cloud region over ocean, and diurnal heating over land.

Clear Sky OLR (OLRclr)

- One might expect differences between AIRS and CERES OLRclr to be large, as a result of even more different sampling and methodology with respect to generating L3 OLRclr product.
- CERES determines OLRclr for all FOVs thought to be cloud free, and fills appropriate values for those not cloud free FOVs.
- Unlike CERES, AIRS OLRclr does not require the scene to be clear because OLRclr is a computed parameter, which represents the longwave flux emanating from the clear portion of the AIRS scene as observed under partial cloud cover conditions. 80% of all FOV's observed by AIRS are included in the L2 OLR products used to generate the L3 OLRclr product.
- From the grid point spatial coverage perspective, ~96% of those grid points covering the AIRS OLR products contain OLRclr product.

- AIRS cloud clearing
 Assumes that other conditions are homogeneous within 9 footprints except cloud conditions.
- From the radiances of 9 footprints, cloud cleared radiance can be determined by linear extrapolation.
- This method performs well under most cloud cases but fails with cloudiest cases.

Area Mean OLRclr Time Series (W/m²)

September 2002 through October 2014 Global

AIRS 1:30 PM AIRS 1:30 AM AIRS AM/PM Average CERES

• OLRclr is higher than all sky OLR.

• Global mean AIRS OLRclr is 7.5W/m² higher at 1:30PM than 1:30 AM.

• CERES global mean OLR closely matches

AIRS 1:30AM/PM average values, while tropical
mean matches with AIRS 1:30AM values.

Tropics (30°N to 30°S)

Differences in Area Mean OLRclr Time Series (W/m²)

September 2002 through October 2014 Global

AIRS 1:30 PM AIRS 1:30 AM AIRS AM/PM Average

- CERES global mean OLR closely matches AIRS 1:30AM/PM average values, while the tropical mean matches with 1:30 AM values.
- In NH, the difference in AM orbit and PM orbit is out phase with seasonal variation.

• AIRS and CERES OLRclr climatology match better than might be expected, but unlike OLR, the biases are region dependent.

Clear Sky Outgoing Longwave Radiation (W/m²) July Climatology a) AIRS 1:30 AM/PM Average b) C)AIRS 1:30 AM/PM minus CERES 30 1 170 210 250 290 Mean = 269.71 STD = 24.81 Mean = 270.74 STD = 26.75Mean = 1.0360 S Mean = 7.57 STD = 13.34 Mean = -2.76 STD = 6.75 Mean = 4.81 STD = 9.07

• Diurnal differences are larger over land during summer, these cause the contrast in AM and PM difference patterns.

Longwave Cloud Radiative Forcing (W/m²)

- The LWCRF is up to 75 W/m^2 over the tropics. The difference patterns are complex.
- AIRS values are lower throughout extra-tropical storm track regions polewards of 35 degrees, especially in the winter hemisphere.
- By the passage of cold front, it is cold and cloudy in general. AIRS sampling over those regions may cause low OLRclr values.

Longwave Cloud Radiative Forcing (W/m²)

- The LWCRF is up to 100 W/m^2 over the tropics.
- AIRS values are lower throughout extra-tropical storm track regions in southern winter regions, polewards of 35S.

 18

Daily fields: AIRS Version-6 January 15, 2014 1:30 PM

- About 89% of grids are covered in a single time period. About 96% of those grids were contained values for OLRclr.
- OLRs are low (high) where the surface skin temperature is low (high).
- OLRs are low where mid-high level clouds exist, where 500 mb specific humidity is also high.
 - This lowers clear sky OLR in these regions as well.

Daily fields: AIRS Version-6 July 15, 2014 1:30 PM

Solution among OLR, surface skin temperature, clouds, and humidity are identical with NH winter, but the cloud pattern is different in two seasons.

Part 2 Comparison of AIRS and CERES OLR in Anomalies

- CERES climatologies are based on the same 12 consecutive years as AIRS
- Agreement in two data sets are valuable to assess the near term trend and inter annual variabilities in OLR and LWCRF.

Summary

- AIRS Version-6 OLR matches CERES Edition-2.8 OLR very closely on a 1°x1° latitude x longitude scale, both with regard to absolute values, and also with regard to anomalies of OLR. There is a bias of ~3.5W/m², which is nearly constant both in time and space.
- Sontiguous areas contain large positive or negative OLR difference between AIRS and CERES are where the day-night difference of OLR is large.
- For AIRS, the larger the diurnal cycle, the more likely that sampling twice a day is inadequate.
- Lower values of OLRclr and LWCRF in AIRS compared to CERES is at least in part a result of AIRS sampling over cold and cloudy cases.

Back ups

Comparison with MERRA 2

